A magnesium ion core at the heart of a ribozyme domain

Jamie H. Cate, Raven L. Hanna and Jennifer A. Doudna

Large ribozymes require divalent metal ions to fold. We show here that the tertiary structure of the Tetrahymena group I intron P4-P6 domain nucleates around a magnesium ion core. In the domain crystal structure, five magnesium ions bind in a three-helix junction at the centre of the molecule. Single atom changes in any one of four magnesium sites in this three-helix junction destroy folding of the entire 160-nucleotide P4-P6 domain. The magnesium ion core may be the RNA counterpart to the protein hydrophobic core, burying parts of the RNA molecule in the native structure.

In many proteins, buried hydrophobic residues form a core around which the native structure folds. Equivalent structural principles for RNA tertiary folding are unknown. The active structures of large RNAs are thought to contain domains of stacked helices that pack together through tertiary contacts. Magnesium ions play fundamental roles in the formation and stability of these structures.

In the Tetrahymena group I self-splicing intron, as in tRNA, RNA folding is hierarchical: base pairing precedes formation of tertiary structure. Transfer RNAs and the hammerhead ribozyme can adopt their native structure in the presence of either monovalent or divalent cations. Group I introns and other large ribozymes, however, require divalent metal ions for tertiary folding.

The Tetrahymena intron contains two large domains (base-paired (P) regions P4-P6 and P1-P2.1/P3-P9; Fig. 1a) that fold sequentially in a magnesium-dependent manner. The P4-P6 domain (Fig. 1a) folds before the rest of the ribozyme and forms its native structure when synthesized as a separate RNA. Within the intact intron, as well as in the P4-P6 domain alone, helices P5a–P5c (P5abc; Fig. 1c) require the lowest concentration of Mg$^{2+}$ to fold. In fact, the P5abc three-helix junction is itself a stable subdomain.

A striking feature of the P4-P6 domain crystal structure is the clustering of divalent metal ions in the P5abc subdomain (Fig. 1b). Within the P4-P6 molecule, the subdomain is the most complex region of tertiary folding. The subdomain three-helix junction buttresses the A-rich bulge, an adenosine-rich corkscrew that forms key tertiary interactions bridging the helical halves of the P4-P6 RNA (Fig. 1b). Together with the above biochemical data, the structure suggests that specific magnesium ions may organize the three-helix junction and drive the normal folding pathway of the P4-P6 domain and, ultimately, of the entire ribozyme. Rather than folding around a hydrophobic core, this large RNA may fold around a metal ion core.

Manganese substitution in P4-P6 domain crystals

To prove the identity of magnesium ions in the P4-P6 domain, crystals were transferred to a solution containing no magnesium, 5 mM manganese chloride and 4 mM spermine. X-ray diffraction data measured from a manganese-soaked crystal were used to calculate an anomalous difference Fourier electron density map, revealing 14 peaks of 7σ or more above the mean (Fig. 1b). Six peaks appear at identical positions in each of the two molecules in the asymmetric unit of the crystal. One may be due to cobalt hexammine bound in the major groove of P5b (Fig. 1c). The remaining five peaks occur at precisely the locations of the magnesium ions bound in the three-helix junction and the A-rich bulge, as modelled in the original structure (Fig. 2a).

These five metal ions bridge noncontiguous nucleotides to form a structural core that buries parts of the RNA backbone in this region. Each of the ions binds to the RNA through at least one direct (inner-sphere) coordination. Two metals are positioned above and below the plane of the A-rich bulge corkscrew, each directly coordinated by three phosphate oxygens (Fig. 2b). A third metal, ringed by phosphates from helix P5c, binds to the carbonyl oxygen of G188 above the corkscrew (Fig. 2c). Two sheared G–A base pairs that top the P5b helix close to the junction coordinate a fourth metal through the N7 and O6 functional groups of the adjacent guanosine bases (Fig. 2d). Finally, the adenosine platform in the loop of L5c binds to a fifth metal through the pro-R$_1$ phosphate oxygen of A171 (Fig. 2e).
Disruption of folding by phosphorothioates

If the identified divalent metal ions play active roles in P4-P6 domain folding, disruption of the magnesium binding sites should prevent the RNA from adopting its native structure. Since the pro-Rp phosphate oxygens of four adenosines directly coordinate divalent ions (A171, A184, A186 and A187; Fig. 1c and Fig. 2a), the functional importance of at least three of the five metals could be tested by phosphorothioate substitution interference. Sulphur atoms, readily incorporated into RNA as Rp phosphorothioates, coordinate magnesium ions 30,000 times more weakly than do oxygen atoms.

Two molecules were tested for magnesium-dependent folding: the 160-nucleotide P4-P6 domain and a 56-nucleotide RNA consisting of the subdomain three-helix junction (Fig. 1). Mutants of the two molecules (A186U) were tested as controls for unfolding. The P4-P6 domain and subdomain RNAs require magnesium ions to fold, as shown by mobility in nondenaturing polyacrylamide gels (Fig. 3a) and by Fe-EDTA footprinting (E. Doherty and J.A.D., unpublished data). For the phosphorothioate substitution experiments, each RNA was transcribed in four separate reactions, each containing one of the α-phosphorothioate nucleotides (A, C, G or U). The concentrations of nucleotides were adjusted such that, on average, one Rp phosphorothioate substitution occurred per RNA molecule. Significantly, relative to the C, G or U α-phosphorothioate-containing samples, more of the adenosine α-phosphorothioate-containing RNA failed to fold (Fig. 3a).

The folded and unfolded RNAs in each sample were isolated, and sulphur substitutions that prevented folding were mapped by iodine/ethanol cleavage of the RNA backbone. Sequencing gels of the iodine-cleaved RNAs revealed seven positions at which a single phosphorothioate substitution destroys RNA tertiary structure. These positions are identical in the P4-P6 domain and the P5abc subdomain RNAs. Apart from one substitution that disrupts an RNA–RNA hydrogen bond (A139, manuscript in preparation), all the sites involve coordination to four magnesium ions in the subdomain. Sulphur replacement at any one of the pro-Rp phosphate oxygens directly coordinating Mg2+ ions (A171, A184, A186 or A187) prevents RNA folding. At two other sites (G163 and G188), phosphorothioate substitution may block folding by weakening hydrogen bonds to metal-coordinated water molecules or by causing a steric clash (Fig. 2a).

Modes of magnesium binding

Magnesium and manganese ion binding sites in the P4-P6 domain can be compared to those in tRNA and the hammerhead ribozyme, the only other non-duplex RNAs whose crystal structures are currently known. In contrast to our results, manganese ions usually did not bind to tRNA and the hammerhead in the same way as magnesium ions. Direct coordination of magnesium ions to base functional groups was also not observed in these RNAs. Based on native electron density maps and lanthanide ion replacement, three magnesium binding sites in tRNA were identified that involve direct coordination of one or two phosphate oxygens to the ion. One such site was found in the hammerhead ribozyme. The differences in number and specificity of magnesium coordination sites in tRNA and the hammerhead ribozyme compared to those in the P4-P6 domain may reflect both the design of the manganese replacement experiments in each case and fundamental structural differences between these RNAs. We suspect that at the high spermine concentration used in our experiments (4 mM), spermine competed for weak magnesium ion binding sites, since only seven peaks per molecule appear in the anomalous difference Fourier map. For example, three fully hydrated magnesium ions seen in experimental electron density maps to bind the P4-P6 domain through outer sphere coordination are not replaced by Mn2+ in the anomalous difference Fourier experiment. Thus, only the most specific divalent metal binding sites were bound by manganese ions in the P4-P6 domain crystals.

A metal ion core in the Tetrahymena group I intron

Unlike tRNA and the hammerhead ribozyme, the P4-P6 domain involves extensive helical packing that creates a solvent inaccessible interior. Magnesium ions play a different and more specific role in the tertiary folding of the P4-P6 domain by burying phosphate oxygens exposed in the unfolded state. Within the native
Fig. 2 The magnesium ion core of the P4-P6 domain. a, Stereo view of the three-helix junction (blue) superimposed on the anomalous difference Fourier electron density map (red) contoured at 5.7σ above the mean. The five difference density peaks correspond exactly to the locations of the five magnesium ions positioned in the 2.8 Å resolution structure.

b, Two magnesium ions (large red spheres) each directly coordinate to three phosphate oxygens in the A-rich bulge. Thick dashed lines refer to oxygens whose substitution with sulphur destroys folding of the subdomain and the entire P4-P6 domain (Fig. 3). The pro-R$_{P4}$ oxygens of G188 probably coordinates a metal-bound water. c, G188 coordinates a magnesium ion directly through its carbonyl oxygen; phosphates ring this binding pocket at the top of the three-helix junction. d, Two tandem shared G-A base pairs at the bottom of the junction, which coordinate a magnesium ion through guanosine O6 and N7 groups. G163 may coordinate an outer-sphere water through its pro-R$_{P6}$ oxygen (stereo view). e, A fifth magnesium ion binds below A171 in the L5c A-platform. Figure prepared using RIBBONS 2.65 and MIDASPlus, a program developed at the Computer Graphics Laboratory, University of California, San Francisco (supported by the NIH).

structure, many phosphate oxygens in the P5abc subdomain are inaccessible to solvent (Fig. 4). These phosphate oxygens mainly involve inner-sphere or outer-sphere coordination to magnesium ions, forming a highly charged core not unlike a hydrated salt. This ionic environment, while chemically distinct from the hydrophobic core of proteins, likewise provides a large contribution to tertiary folding. In proteins, a well-packed hydrophobic core is favoured over buried salt bridges, probably because of electrostatic interactions in the folded state do not overcome the large cost of side chain desolvation. In the P4-P6 domain, magnesium ion binding involves a large number of ionic and hydrogen bonds, which could overcome the cost of phosphate and magnesium desolvation.

Divalent metal ion binding is the driving factor in forming the tertiary structure of the Tetrahymena ribozyme. In the absence of Mg$^{2+}$, the intron forms most of its secondary structure but little, if any, of its tertiary structure. At least three cooperative folding transitions occur as a function of magnesium ion concentration on the intron folding pathway. Specific positions in the P5abc subdomain backbone become protected from free radical cleavage at the lowest concentration of magnesium ion, both in the intact intron and in the P4-P6 domain alone. The cooperativity of P5abc subdomain folding has a Hill coef-
Fig. 3a. Native gel mobility assay for RNA folding. Folded and unfolded molecules were separated by electrophoresis on 8% native polyacrylamide gels. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions. A point mutation in the A-rich bulge (A186U) disrupts tertiary folding of both the subdomain and the entire P4-P6 domain even at a concentration of 50 mM magnesium ions.

We consistently observed ~30% unfolded aA subdomain RNA and ~10% unfolded aA P4-P6 domain RNA, while the percent unfolded RNA for the other aA samples was similar to that for WT (<5%). These percentages are consistent with the S17 A's in the subdomain and S44 A's in the P4-P6 RNA whose pro-R₃ phosphate oxygens directly coordinate magnesium ions in the crystal structure. Species with intermediate mobility in the P4-P6 native gel will be discussed elsewhere. A. Mapping of sulphur substitutions in folded and unfolded RNAs. Left, subdomain RNAs containing aA or aG phosphorothioates were incubated in the presence (+) or absence (-) of iodine methanol and the products analyzed on a 10% denaturing polyacrylamide gel. Right, P4-P6 RNAs containing aA or aG phosphorothioates were incubated in the presence (+) or absence (-) of iodine methanol products were analyzed on a 8% denaturing polyacrylamide gel. Labelled nucleotides, positions where phosphorothioate substitution disrupts RNA tertiary structure. No pro-R₃ phosphate oxygen substitutions of C or U residues disrupted tertiary structure (data not shown). All experiments were performed in triplicate.

Methods

X-ray crystallography. Crystals of the P4-P6 domain were grown and stabilized as described. Crystals were then transferred to a solution containing 25% 2-methyl-2,4 pentanediol (MPD), 10% isopropanol, 100 mM potassium cacodylate pH 6.0, 50 mM KC, 4 mM spermine·HCl, 5 mM MgCl₂ and 0.1 mM cobalt hexammine chloride. After 15 min, the MgCl₂ was replaced with 5 mM MnCl₂ and the crystals left for three days. X-ray diffraction data (20-3.5 Å resolution) were measured at 105 K from a crystal soaked in the Mn-containing solution, rotating anode source, Cu Kα radiation; |E| = 5 at 3.5 Å resolution, completeness = 99% to 3.5 Å, R = 9.6% on I, average redundancy = 4. A new P4-P6 model was obtained by rigid body refinement of the 2.3 Å resolution structure against the Mn²⁺ soaked crystal diffraction amplitudes. Phases from this model were refined by solvent flattening with 65% solvent content. Anomalous difference Fourier maps were calculated using the refined phases and diffraction amplitudes from 20-4 Å resolution.
Phosphorothioate substitution interference. P4–P6 RNA was transcribed in vitro as described. Mutant A186U P4–P6 RNA and subdomain RNAs were transcribed from PCR-amplified plasmid templates. Four pools of RNA molecules were prepared by in vitro transcription reactions doped individually with A, C, G or U phosphorothioate nucleotides. Concentrations of nucleotides and the phosphorothioate analog were adjusted such that each molecule contained approximately one phosphorothioate substitution. Transcripts were purified by denaturing polyacrylamide gel electrophoresis, 32P-dephosphorylated with calf intestinal phosphatase, and 5’-end-labelled with 32P using T4 polynucleotide kinase. After phenol/chloroform extraction and ethanol precipitation, the subdomain RNAs were incubated in 100 mM Tris-HEPES pH 7.5, 10% glycerol and 5 mM MgCl2 for three minutes at 80 °C and allowed to cool to room temperature; the P4–P6 domain RNAs were incubated in a similar buffer containing 2 mM MgCl2 at 65 °C for five minutes. Folded and unfolded RNAs were separated on non-denaturing 8% polyacrylamide gels containing 100 mM Tris-HEPES pH 7.5, 0.1 mM EDTA and 5 mM MgCl2 for the subdomain, or 2 mM MgCl2 for P4–P6. The eluted RNA samples were phenol/chloroform extracted, ethanol precipitated, resuspended in formamide loading buffer (FLB, 45% formamide, 10 mM Tris pH 8.0 and 1.0 mM EDTA) and purified on denaturing 10% polyacrylamide gels. The radioactivity of each sample was normalized prior to iodine/ethanol sequencing. Each RNA sample was divided in half and incubated briefly at room temperature in FLB with or without iodine/ethanol. The resulting products were resolved by denaturing polyacrylamide gel electrophoresis. Gels were scanned with a Fuji phosphorimager and the resulting images visualized with MacBas 2.0.

Acknowledgements
We thank Kambiz Zhou for excellent technical assistance, Scott Strobel for providing the A186U Tetrahymena nitron mutant plasmid, Carl Corell, Liz Doherty, Fred Richards and Paul Sigler for helpful discussions, and Virginia Path, Lynne Regan and Tumi Steitz for comments on the manuscript. J.A.D. is a Lucille Markey Scholar in Biomedical Science, a Donaghue Foundation Young Investigator, a Beckman Foundation Young Investigator, a Seaars Scholar and a Fellow of the David and Lucile Packard Foundation. This work was supported by the Lucille Markey Charitable Trust, the Beckman Foundation, the Seaars Scholars Program and the NIH.

Received 24 February 1997; Accepted 30 May 1997.
16. Cate, J.H. & Doudna, J.A. Metal binding sites in the major groove of a large ribozyme domain. Structure 4, 1221–1225 (1996).